Hausdorff School: Economics and Tropical Geometry

Some New Topics in International Trade Theory

Partly corrected 2016.6.1 (sheets: 16 and 29)

Y. Shiozawa

Emeritus, Osaka City University

Contents

- 1. Ricardian Trade Economy
- Subtropical convex geometry as Ricardian theory of international trade
- 3. Some new ideas and problems

Backgound for Ricardian trade theory

One of the oldest theories in economics

- Mercantilists (16-18th centuries)
- Adam Smith (free trade)
- Ricardo: Comparative advantage theory
- Oppositions: Alexander Hamilton, Frederick List (German Historical School)

• D. Ricardo's theory of international trade

- Principles of Political Economy and Taxation, 1817. Chap.7 On Foreign Trade.
- Ricardo succeeded to explain gains from trade even in the case when a country has inferior production techniques than the other in all industries. (Absolute advantage vs. comparative advantage)
- S. Ulam once asked S. if any economic theory is true but not trivial.
- Samuelson's answer: Ricardo's theory of comparative advantage

New Interpretation!?

- A new interpretation in 2002-04.
 - Faccarello (2015) Comparative Advantage
 - Shiozawa (2016) The New Interpretation of Ricardo's Four Magic Numbers and the New Theory of International Values, in RG.
- Comparative advantage vs. comparative cost
 - Comparative advantage is not defined in a general case (with input trade).
 - Cost comparison is still valid. Shiozawa (2016b)

Ricardian trade economy

Traditionally, dealt with cases

- *M*-country, *N*-commodity
 - Minimal model was (2, 2) type.
- Production: labor input economy
- Capital goods.
 - Vertical integration
 - Applicable if no input goods are traded.
- Explored in 1950's.
 - L. McKenzie, R. Jones
 - Generalization: Dornbusch, Fischer, and Samuelson (1977) Case of a Continuum of goods.

Crucial defects: No input trade (intermediate goods)

Ricardo-Sraffa trade economy

- *M*-country, *N*-commodity case
- Production: material input
 - Capital: general name of input goods
 - Choice of production techniques
- Input trade (traded intermediate goods)
 - finished goods vs. intermediate goods
 - Introduction of trade in intermediate product necessitates a fundamental alteration of the theory.
 - Distinction between Ricardian t.e. and RS t.e. crucial.
 - Subtropical theory only applies to R.t.e..

Importance of RS trade economy

- The real RS t.e. is structurally different from R t.e.
 - A challenging problem for tropical theory.
 - N.B. If input goods are not traded, RS t.e. is reduced to R. t.e.

Actual problems are related to RS t.e.

Industrial revolution in Lancashire, Cotton.

Fragmentation, Global value chain, etc.

Ricardian trade theory as subtropical convex geometry

- Subtropical algebra
 - **R**+
 - $\blacksquare a \oplus b = min\{a, b\} a \odot b = a \cdot b$
 - isomorphic to the tropical (min, plus)-algebra in **R**.
 - log: $\mathbb{R}_+ \to \mathbb{R}$; log (a · b) = log (a) + log (b).
- Well adapted to the description and analysis of R t.e.
- Details: Shiozawa (2012; 2015a)
- Many topics to be developed.
- Good concrete model of tropical geometry.

Ricardian trade economy: mathematical formulation

•Input coefficient matrix $A = (a_{ij})$

M-row N-column matrix

- a_{ij} labor input coefficient in country i to produce product j
- labor power $\mathbf{q} = (q_i)$
- International value v = (w, p)

 $\mathbf{w} = (w_i)$ wage rate for country *i*

p = (p_i) price for product *j*

Some notions: PPS, value, competitive pattern

- Production possibility set (PPS), a polytope in R₊^N.
 - $\mathsf{P} = \{ \mathbf{y} \mid y_j = (\sum_i s_{ij}), \sum_j s_{ij} a_{ij} \leq q_i, s_{ij} \geq 0 \forall i \}$
- $\mathbf{v} = (\mathbf{w}, \mathbf{p}) = (w_1, \dots, w_M, p_1, \dots, p_N)$
 - w_i wage for labor of country *i*, I = 1, 2, ..., M.

p_j price of commodity j, j = 1, 2, ..., N.

• Admissible value $\mathbf{v} = (\mathbf{w}, \mathbf{p}) > \mathbf{0}$:

No (*i*,*j*) $W_i a_{ij} < p_j$ (No production with extraordinary profits)

• Competitive pattern $t = \{(i, j) | w_i a_{ij} = p_j\}$

Main theorem

 At each facet of PP set there exists an admissible international value v = (w, p) with p that is perpendicular to the facet and satisfies equality:

<w, q> = <p, y>

where **y** is a point in the facet.

 Competitive pattern of a facet is spanning. The converse is true.

Why subtropical algebra?

- Subtropical semiring
 - \blacksquare a \bigoplus b = min{a, b} a \bigcirc b = a•b

Ricardian trade theory

- Minimum, multiplication (value relations)
- Minkowski sum (quantity relations)
- A natural object for (sub)tropical analysis
- A concrete object for duality

Matrix operation

• $w \otimes A = \min_i w_i a_{ij}$ is comparable with p_j

v is admissible \Leftrightarrow w \otimes A = p

Some new ideas (in economics)

•What happens in the interior of PPS?

- Economically, this is to investigate unemployment.
- This requires study admissible value independent of production point.
- **Normal value** (main theorem, spanning type)
- Tropical oriented matroid:
 - a set of fine types (⇔competitive types)

Necessary labor set

- A and d are given;
- L = { q | $q_i = (\sum_j s_{ij} a_{ij})_i, \sum_i s_{ij} = d_j$
- An admissible value gives upper facet.
- •An anti-admissible value gives lower facet. $w_{ij} a_{ij} \leq p_j \forall \tau = (i,j).$
- Other values: mixed value
 - $\blacksquare \exists I, j \text{ wij aij} < pj \text{ and } \exists h, k w_{hk} a_{hk} > p_k$

Spanning type determines value.

- $A = (a_{ij})$ is given.
 - $\mathbf{v} = (\mathbf{w}, \mathbf{p}) \Rightarrow T = \{ \mathsf{T} = (i,j) | w_i a_{ij} = p_j \}$
- T: (M,N) bipartite graph $T \in K_{M,N}$
- T: spanning tree
 - connected (tree: one connected component)
 - spanning (edges cover all countries and goods)
 - **no cycle** (no cyclic chain of edges)
 - In (2,3) trade economy, there are 12 different spanning trees. See the next sheet.

Properties of spanning trees and value determination

- (M,N) spanning tree has M+N-1 edges.
- Contains leaves (vertex with degree 1)
- Start by any value from a vertex of a leaf w_i if country vertex i and p_j if product vertex i.
- Continue fixing the value of a new vertex by eq. $w_i a_{ij} = p_j$ when $(i,j) \in T$.
- All vertices are covered (spanning) and no contradiction (no cycle)

Matrix A in a general position

- Pallaschke and Rosenmüller (2004), *E* = {*A*, **q**} as a cephoid.
 - Cephoid is a PP set for a Ricardian trade economy.
 - Definition 1.5 ("nondegenerate" or "in general" position) is rather complicated.

• A new definition:

- A is in a general position \Leftrightarrow
 - $T = \{(i,j) \mid w_i a_{ij} = p_j\} \text{ is acyclic } \forall w, p.$
- We may restrict the range of definition to normal values.

Bipartite graph corresponding to directed 2,3 Ricardian trade economy $K_{2,3}$

An acyclicity theorem

Theorem:

If T1 and T2 are two different competitive types of a matrix A in general position, then directed bipartite graph T1UT2 has no directed cycle.

Proof: Let v1 and v2 be values determined repectively by T1 and T2. If cycle exists, v1 = v2 or matrix A is not in general position. QED.

Types that can be consistent

Problems:

- Number of spanning trees for bipartite graph $M^{N-1} \cdot N^{M-1}$ (Scoin's formula).
- Set of normal types
 - (A1 B123), (A13 B23), (A123 B2)
 - Number of consistent types: equals to the number of multi sets H^M_{N-1} = (M+N-2)!/(M-1)! (N-1)!
- Can we characterize the set of normal types that may corresponds to a matrix?
- How many spanning types in a given class?

Really challenging problems:

 Can we extend the theory to RS trade economy? (RS is much more important than R)

value relation:

 $\min\{w_{i0} + a_{i1} p_1 + \cdots + a_{iN} p_N\} = p_N$ tropical parallelism: $\bigoplus\{w_{i0} \odot p_1^{ai1} \odot \cdots \odot p_N^{aiN}\} = p_N$ Here

 a_{ij} can be assumed integral, but very large.

References:

- Pallaschke and Rosenmller (2004) Cephoids; Minkowski Sums of Prisms, Working paper.
- Shiozawa (2007) A New Construction of Ricardian Trade Theory: Many-country, Many-commodity Case with Intermediate Goods and Choice of Techniques. *Evol. Inst. Econ. R.*
- Shiozawa (2012) Subtropical convex geometry as the Ricardian theory of international trade, in RG.
- Shiozawa (2015a) International trade theory and exotic algebra, *Evol. Inst. Econ. R.*
- Shiozawa (2015b) International values and associated spanning trees (in Japanese).
- Shiozawa (2016) New Interpretation of Ricardo's four Magic Numbers and the New theory of International Values, in RG.

Questions and comments welcome.Write to y@shiozawa.net