SIAM Conference on Applied Algebraic Geometry (AG15) August 3-7, 2015 at Daejeon (Korea) MS64: Recent developments in Geometric and Algebraic Methods in Economics (Aug 7; 14:00-16:00)

## Subtropical Convex Geometry as the Ricardian Theory of International Trade

Errors corrected on Aug. 9, 2015

#### Y. Shiozawa

Emeritus, Osaka City University

## Contents

- 1. Ricardian Trade Economy
- 2. How I encountered tropical algebra
- 3. Some new ideas



- Subtropical Convex Geometry as the Ricardian Theory of International Trade
  - This is the title of an incomplete book. Major part is uploaded in my ResearchGate page.
- International trade theory and exotic algebra
  - Published as Shiozawa, Y. 2015 International Trade Theory and Exotic Algebra. *Evolutionary and Institutional Economics Review* 15(1): 177-212. A part of special issue, edited by E.-M. Feichtner and S. Settepanella.

#### Request me for the papers: y@shiozawa.net

Backgound for Ricardian trade theory

### One of the oldest theories in economics

D. Ricardo 1817 Principles of Political Economy and Taxation. Chapter 7 On Foreign Trade.

#### True and nontrivial

- S. Ulam's question to P.Samuelson
- Name a theory which is both true and nontrivial.
- Samuelson's answer (after days): Ricardo's theory of comparative advantage

# Ricardian theory of international trade

- *M*-country, *N*-commodity case
- Production: labor input economy
  - Can incorporate material inputs
  - ■No intermediate goods (no input trade) ⇒equivalent to labor input economy
  - Economy with input trade is named Ricardo-Sraffa trade economy.

 Best process (production technique) is physically determined.

## A Ricardian trade economy

- Input coefficient matrix  $A = (a_{ij})$ 
  - M-row N-column matrix
  - a<sub>ij</sub> labor input coefficient in country *i* to produce product *j*
- labor power  $\mathbf{q} = (q_i)$
- International value v = (w, p)
  - $\mathbf{w} = (w_i)$  wage rate for country *i*
  - **p** =  $(p_i)$  price for product *j*

## PPS, admissible value

- Production possibility set (PPS)
  P = {y | y<sub>j</sub> = (∑<sub>i</sub> s<sub>ij</sub>), ∑<sub>j</sub> s<sub>ij</sub> a<sub>ij</sub> ≤ q<sub>i</sub>, s<sub>ij</sub> ≥0 ∀i } ☆PPS is a polytope in ℝ<sup>N</sup>.
- Admissible value  $\mathbf{v} = (\mathbf{w}, \mathbf{p}) > \mathbf{0}$ .

$$w_i a_{ij} \ge p_j \quad \forall i, j$$

#### Main theorem

At each facet of PP set there exists an admissible international value with **p** perpendicular to the facet and satisfies equality:

 $\langle \mathbf{w}, \mathbf{q} \rangle = \langle \mathbf{p}, \mathbf{y} \rangle$ where **y** is a point in the facet.











## Subtropical algebra

#### • $a \oplus b = min\{a, b\} a \odot b = a \cdot b$

subtropical = a half way to the tropics.

### Ricardian trade theory

minimum, multiplication, Minkowski sum
 a natural object for (sub)tropical analysis

### Matrix operation

 $\blacksquare$  w $\otimes$ A = min<sub>i</sub>  $w_i a_{ij}$  is comparable with  $p_j$ 

**v** is admissible  $\Leftrightarrow$  w $\otimes$ A = p



## Some new ideas

•What happens in the interior of PPS?

- Economically, this is to investigate underemployment.
- This requires study admissible value independent of production point.
- Tropical oriented matroid:
  - a set of fine types (competitive type associated to an admissible value)

## **Necessary labor set**

- A and d are given;
- L = { q |  $q_i = (\sum_j s_{ij} a_{ij})_i, \sum_i s_{ij} = d_j$
- An admissible value gives upper facet.
- •An anti-admissible value gives lower facet.  $w_{ij} a_{ij} \leq p_j \forall \tau = (i,j)$ .
- Other values: mixed value
  - $\blacksquare \exists I, j \text{ wij aij} < pj \text{ and } \exists h, k w_{hk} a_{hk} > p_k$



## value ⇔ competitive type

- $A = (a_{ii})$  is given.
  - $\mathbf{v} = (\mathbf{w}, \mathbf{p}) \Rightarrow T = \{ \mathsf{T} = (i,j) | w_i a_{ij} = p_j \}$
- T: (M,N) bipartite graph  $T \in K_{M,N}$
- T: spanning tree
  - spanning (edges cover all countries and goods)
  - **no cycle** (no cyclic chain of edges)
  - In (2,3) trade economy, there are 12 different spanning trees. See the next sheet.

























# Properties of spanning trees and value determination

- (M,N) spanning tree has M+N-1 edges.
- Contains leaves (vertex with degree 1)
- Start by any value from a vertex of a leaf w<sub>i</sub> if country vertex i and p<sub>j</sub> if product vertex i.
- Continue fixing the value of a new vertex by eq.  $w_i a_{ij} = p_j$  when  $(i,j) \in T$ .
- All vertices are covered (spanning) and no contradiction (no cycle)

# Economic meaning of admissible values

- **v** is admissible  $\Leftrightarrow w_i a_{ij} \ge p_j \forall i, j$ 
  - no production process with excess profit
- If v is not admissible, there exists a process with excess profit.
  - If someone comes to know this, new entry occurs and wage-price system will be distroyed.
  - In this sense non-admissible value is not stable.

## A in a general position

- Nondegenerate or in general position
- • $\mathcal{E} = \{A, \mathbf{q}\}$  as a cephoid.
  - Pallaschke and Rosenmüller 2006, Definition 1.5).

### A new definition:

A is in a general position  $\Leftrightarrow$ 

 $T = \{(i,j) \mid w_i a_{ij} = p_j\} \text{ is acyclic } \forall w, p.$ 

We may restrict the range of definition to admissible values.

## **References:**

- Ardila, F., and M. Evelin 2007 Tropical Hyperplane Arrangements and Oriented Matroids, <u>http://arxiv.org/pdf/0706.2920.pdf</u> Now *Mathematische Zeitschrift* 262(4) : 795-816. (2009)
- Pallaschke and Rosenmüller 2006 Cephoid: Minkowski sum of prisms, J. Glob. Optim. 35: 321-341.
- Ricardo, D. 1817 The Principles of Political Economy and Taxation.



#### •Questions and comments welcome.