
Airyの浅水波が津波の正体である
—波打際暴発のからくり—

　
Tunamis on a deep open sea and

on a gentle sloping beach

Tadayoshi KANO
　

Institut Vercors, Kyoto, Japon

2025.6.4
　

RIMS



Outline

（イ）津波方程式提示、
（ロ）なぎさ（浅い水）での特異性顕現、
（ハ）その構造と原因の流体力学的解明、
（ニ）津波へ ．．．



1. Water surface waves



2. Euler equations for 2-dim water surface waves
velocity potential Φ = Φ(t, x) : grad Φ = (u, v),
(u, v) : velocity vector field, wave-profile y = Γ (t, x),
g : gravity, seabed : y = b(x),

(2.1) Φxx + Φyy = 0,
(x , y)∈Ωt ={(x , y) ∈ R2, b(x) < y < Γ (t, x), t > 0}

(2.2) − bxΦx + Φy = 0, x ∈ R1, y = b(x)

(2.3) Φt +
1
2(Φx

2 + Φy
2) + y = 0, x ∈ R1, y = Γ (t, x)

(2.4) Γt + ΓxΦx − Φy = 0, x ∈ R1, y = Γ (t, x)

initial data:
Φ(0, x , y) = Φ0(x , y) : harmonic
Γ (0, x) = Γ0(x) > 0.



2bis. Shallow water waves of finite amplitude

Shallow water waves such as:

δ =
h
λ
=

“water depth”
“wave length” << 1,

ε =
a
h =

“amplitude”
“water depth” , could be ∼ 1.

Among those shallow water waves, long waves are of the
structure:(

mean water depth
wave length

)2

and
(

mean water amplitude
mean water depth

)
are of the same order as infinitesimals when the wave length
tends to infinity and the amplitude tends to zero.



(Dimensionless) Euler equations for water waves:
Defining the dimensionless variables by

(t, x , y) =
(λ

c t ′, hy ′, λx ′
)
, (Γ, Φ) = (hΓ ′, cλΦ′),

we have equations for water waves (by dropping prime sign):

δ2Φxx + Φyy = 0, (x , y)∈Ωt ={(x , y) :x ∈R, b(x)<y <Γ (t, x), t >0}
− δ2bxΦx + Φy = 0, x ∈ R1, y = b(x)

δ2(Φt +
1
2Φx

2 + y) + 1
2Φy

2 = 0, x ∈ R1, y = Γ (t, x)

δ2(Γt + ΓxΦx)− Φy = 0, x ∈ R1, y = Γ (t, x)

for the velocity potential Φ, wave profile function Γ with initial
data Φ(0, x , y) = Φ0(x , y), Γ (0, x) = Γ0(x) > 0.
Existence theorem: Levi-Civita, Struik, Lavrentiev, Nalimov, Ovsjannikov,
Shinbrot, Kano-Nishida, Walter Craig, Yoshihara, Wu, Lannes



Shallow water wave equations of Airy:
　 the first nonlinear approximation of finite amplitude
by the error of the order O(δ2).
For {u = Φx , Γ} (gravity = 1):

(2.5) ut + uux + Γx = 0,
(2.6) Γt + ((Γ − b(x))u)x = 0.

3. Tunamis equations.
We give first TUNAMIS EQUATION.
Rewrite (2.5) and (2.6) as follows:

(3.1) ut + uux + (Γ − b(x))x = −bx ,

(3.2) (Γ − b(x))t + ((Γ − b(x))u)x = 0.



Let us now define γ by γ2 = Γ − b(x) > 0,
γ =

√
Γ − b(x) > 0, we have then

(3.3) Pt + (γ + u)Px = −bx ,

(3.4) Qt − (γ − u)Qx = −bx

for P = u + 2γ and Q = u − 2γ.

From these, we have finally the TUNAMIS EQUATIONS:
Definition 3.1 Tunamis equations. The following system of
partial differential equations are tunamis equations:

(3.5) Pt +

(
γ + u +

bx

Px

)
Px = 0

(3.6) Qt −
(
γ − u − bx

Qx

)
Qx = 0.



Let us discuss a little bit on this definition: water surface wave
P , inland tunamis, propagate toward the beaches with the
speed γ + u +

bx

Px
modifying their velocity of cruising

γ + u =
√

Γ − b(x) + u by bx

Px
referring the state of sea-bed

bx in the connection with the structure Px of himself. The
same for the coastal tunamis Q . It is just from this structure
of this “tunamis equations” start a violent tunamis
development on a beach as we see later.



3bis. Tunamis or not tunamis.

Tunamis equations:

(3.7) Pt +
1
4(3P + Q)Px = −bx ,

(3.8) Qt +
1
4(P + 3Q)Qx = −bx ,

with
γ + u =

1
4(3P + Q), γ − u = −1

4(P + 3Q).

No tunamis on a flat beach:
Pt + (γ + u)Px = 0,
Qt − (γ − u)Qx = 0.

Tunamis: water waves on a beach with non vanishing bx and
Γ − b becoming small.



4. Propagation speed of tunamis.

With bx not identically vanishing, P propagate in the direction
x > 0 with the speed

(4.1) γ + u +
bx

Px

that is, they satisfy the equation

(4.2) Pt + (γ + u +
bx

Px
)Px = 0.

The propagation speed of P is affected by the third term in
(4.1) being possibly +∞ or −∞ at the points where Px
vanishes: self-acceleration.



Problems:
( i ) Does there really exist x = X implying
Px(X) = 0 on shallow water near the coast, for
example, in what situation does it occur?

( ii ) What would happen, then ?



5.1 Phenomenologically speaking:

[1] Under the condition γ2 = Γ − b(x) << 1, on x = X ,
before the crest where ux < 0, we have
Px(t,X − ε) > Px(t,X) = 0 for ε << 1 and thus
Px(t,X − ε) → +0 as ε → 0, for tunamis uxx < 0. It implies
that our tunamis P(t, x) get at x = X−0 an instantaneous
+∞ propagation speed rushing thus as inland tunamis.

[2] Under the condition γ2 = Γ − b(x) << 1 on x = X , after
the trough where ux > 0, we have Px(t,X − ε) < Px(t,X) = 0
for ε << 1 and thus Px(t,X − ε) → −0 as ε → 0, for tunamis,
“rather dynamic”, uxx > 0. It implies that our tunamis P(t, x)
get at x = X − 0 an instantaneous −∞ propagation speed
rushing consequently thus to the outer sea as offshore tunamis.



As an image for “sloping beach”:



5.2 The necessary conditions for P to realize Px(t,X) = 0.
We can “find” x = X mentioned above, before crest or after
trough as follows:
Let first

x = X ,Px(t,X) = 0 where Px = ux +
Γx − bx√
Γ − b

= 0.

Then we see
−ux(X)

√
Γ − b = Γx − bx ∼ ±0

for γ =
√
Γ − b << 1.

Thus we see:
( i ) near the crest where ux < 0, we have

Γx(X)− bx(X) ∼ +0, Γx(X)− bx(X) > 0.

( ii ) near the trough where ux > 0, we have

Γx(X)− bx(X) ∼ −0, Γx(X)− bx(X) < 0.



6. Drawing by Hokusai:



An application: a possible alarm system/item.

If (these) two tangents satisfy conditions:
if the sea is shallow:

γ =
√
Γ − b << 1

we would have from Px(X) = 0

−ux(X)
√

Γ − b(X) = Γx(X)− bx(X) ∼ ±0.

And thus we see the situation would be dangerous. We should
make a public alarm.


