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Water surface waves
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2. Euler equations for 2-dim water surface waves

velocity potential @ = @(t,x) : grad & = (u, v),
(u, v) : velocity vector field, wave-profile y = I'(t, x),
g : gravity, seabed : y = b(x),

(2.1) &+ D, =0,
(x,y)€Q:={(x,y) € R? b(x) <y < I'(t,x),t > 0}
(22) —bP,+P, =0, x€R', y=b(x)

1
(23) &+ §(qbﬁ +&,2)+y=0, xRy =I(t,x)

(24) I+ P, — P, =0, xR y=1TI(t,x)

initial data:
@(0, x,y) = Po(x,y) : harmonic
I'(0,x) = I(x) > 0.



2bis. Shallow water waves of finite amplitude

Shallow water waves such as:

h  “water depth”
A “wave length”
a  “amplitude”

h~ “water depth’’

0= <1,

€= could be ~ 1.

Among those shallow water waves, long waves are of the
structure:

(mean water dept“h)2 and (mean water amp/itude>

wave length mean water depth

are of the same order as infinitesimals when the wave length
tends to infinity and the amplitude tends to zero.



(Dimensionless) Euler equations for water waves:

Defining the dimensionless variables by
A
(tx5) = (SE./ M), (1) = (AT, AP),

we have equations for water waves (by dropping prime sign):

5P, +&,=0,(x,y)eQe={(x,y): xeR, b(x) <y <I(t,x),t>0}
— b ®, + P, =0,x € R' y = b(x)
1 1
52(Q5t + §@X2 +y)+ E@yz =0,x Ry = I'(t,x)
(It + Id,) — P, =0,x € RY y = I'(t, x)

for the velocity potential @, wave profile function I with initial
data D(0,x,y) = Po(x,y), I'(0,x)=Ip(x)>0.

Existence theorem: Levi-Civita, Struik, Lavrentiev, Nalimov, Ovsjannikov,
Shinbrot, Kano-Nishida, Walter Craig, Yoshihara, Wu, Lannes



Shallow water wave equations of Airy:

the first nonlinear approximation of finite amplitude
by the error of the order O(42).
For {u= ®,, '} (gravity = 1):

(2.5) uy + uu, + Iy =0,
(2.6) I+ ((I" = b(x))u), = 0.

3. Tunamis equations.
We give first TUNAMIS EQUATION.
Rewrite (2.5) and (2.6) as follows:

(3.1) ur + uuy + (I = b(x))x :—bX,
(32)  (I'=b(x))e + ((I' = b(x))u)x =



Let us now define v by 42 = I — b(x) > 0,
v =+/I"— b(x) > 0, we have then

(33) Pt‘i‘(”)/‘i‘U)Px:_bxa
(3.4) Qe — (v — u) Q@ = —bx

for P=u+2yand Q =u—2y.

From these, we have finally the TUNAMIS EQUATIONS:

Definition 3.1 Tunamis equations. The following system of
partial differential equations are tunamis equations:

by
(3.5) Pt+(7—|—u+P)P—O

(3.6) Qt—(’y—u—@)Qx—o



Let us discuss a little bit on this definition: water surface wave
P, inland tunamis, propagate toward the beaches with the
speed v + u + FX modifying their velocity of cruising

X

v+ u=+/I"—b(x)+ u by % referring the state of sea-bed

b, in the connection with the thructure P, of himself. The
same for the coastal tunamis Q. It is just from this structure
of this “tunamis equations” start a violent tunamis
development on a beach as we see later.



3bis. Tunamis or not tunamis.
Tunamis equations:
(3.7) P + (3P + Q)Px = —by,
(3.8) Qe+ (P+3o)o b,

with
1 1
v+ u= Z(3P+Q)’ vY—u= _Z(P+3Q)'
No tunamis on a flat beach:

P:+ (v + u)P. =0,
Qt_(fV_U)QX:O'

Tunamis: water waves on a beach with non vanishing b, and
I' — b becoming small.



4. Propagation speed of tunamis.

With b, not identically vanishing, P propagate in the direction
x > 0 with the speed

by
4.1 —
(4.1) 7+u+PX

that is, they satisfy the equation

by
(4.2) Pe+(v+u+ F)PX =0.
The propagation speed of P is affected by the third term in
(4.1) being possibly +00 or —oo at the points where P,
vanishes: self-acceleration.



Problems:

(i) Does there really exist x = X implying
P.(X) = 0 on shallow water near the coast, for
example, in what situation does it occur?

(ii) What would happen, then ?



5.1 Phenomenologically speaking:

[1] Under the condition 42 = I' — b(x) << 1, on x = X,
before the crest where u, < 0, we have

P.(t,X —¢) > P,(t,X) =0 for e << 1 and thus

P.(t,X —¢) — +0 as ¢ — 0, for tunamis u,, < 0. It implies
that our tunamis P(t, x) get at x = X — 0 an instantaneous
400 propagation speed rushing thus as inland tunamis.

[2] Under the condition 42 = I" — b(x) << 1 on x = X, after
the trough where u, > 0, we have P, (t, X —¢) < P (t,X) =0
for e << 1 and thus P,(t, X —¢) — —0 as ¢ — 0, for tunamis,
“rather dynamic”, u,, > 0. It implies that our tunamis P(t, x)
get at x = X — 0 an instantaneous —oo propagation speed

rushing consequently thus to the outer sea as offshore tunamis.



As an image for “sloping beach”:
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5.2 The necessary conditions for P to realize P, (t, X) = 0.

We can “find” x = X mentioned above, before crest or after
trough as follows:

Let first
x=X,P(t,X)=0 where P,=u +FX_bX—O
= A, Px\G = x — Ux /—F—b_ .

Then we see

—u(X)VI —b=1T,—b,~=+0
fory=+vI'—b <1,

Thus we see:
(i) near the crest where u, < 0, we have

I(X) = be(X) ~ +0, I'((X) — b(X) > 0.
(ii) near the trough where u, > 0, we have

FX(X) - bx(X) ~ _O’ FX(X) - bX(X) <0.



6. Drawing by Hokusa




An application: a possible alarm system/item.

If (these) two tangents satisfy conditions:
if the sea is shallow:

y=vI-bxkl
we would have from P, (X) =0
—u (X)) T — b(X) = I'((X) — by(X) ~ £0.

And thus we see the situation would be dangerous. We should
make a public alarm.



